题目:Single-Molecule Imaging of Activated Nitrogen Adsorption on Individual Manganese Phthalocyanine
报告人:陈伟 副教授 新加坡国立大学化学系、物理系
时间:2015年5月7日(周四)下午16:00
地点: 高分子会议室
单位:湖北省有机高分子光电功能材料重点实验室
Abstract :
An atomic-scale understanding of gas adsorption mechanisms on metal-porphyrins or metal-phthalocyanines is essential for their practical application in biological processes, gas sensing and catalysis. Intensive research efforts have been devoted to the study of coordinative bonding with relatively active small molecules, such as CO, NO, NH3, O2 and H2. However, the binding of single nitrogen atoms has never been addressed, which is both of fundamental interest and indeed essential for revealing the elementary chemical binding mechanism in nitrogen reduction processes. Here, we present a simple model system to investigate, at the single-molecule level, the binding of activated nitrogen species on the single Mn atom contained within the manganese phthalocyanine (MnPc) molecule supported on an inert graphite surface. Through the combination of in situ low-temperature scanning tunneling microscopy, scanning tunneling spectroscopy, ultraviolet photoelectron spectroscopy, x-ray photoelectron spectroscopy investigations and density functional theory calculations, the active site and the binding configuration between the activated nitrogen species (neutral nitrogen atom) and the Mn center of MnPc is investigated at the atomic scale.
CV:
Dr. CHEN Wei is currently an Associate Professor (2013 - ) in both Chemistry Department and Physics Department at National University of Singapore (NUS). He received his Bachelor’s degree in Chemistry from Nanjing University (China) in 2001, Ph.D. degree from Chemistry Department at NUS in 2004. His current research interests include Molecular-scale Interface Engineering for Molecular, Organic and Graphene Electronics, and Interface-Controlled Nanocatalysis for Energy and Environmental Research. He has also published more than 160 papers on high-impact peer-reviewed journals in these topics, including 14 invited review articles, and receiving over 4200 citations with H-index of 35.